If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+76q=0
a = 2; b = 76; c = 0;
Δ = b2-4ac
Δ = 762-4·2·0
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-76}{2*2}=\frac{-152}{4} =-38 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+76}{2*2}=\frac{0}{4} =0 $
| 6(2-2x)=-12 | | 36n=-81n^2-4 | | 180=(2x+1)+3x-10 | | 2(2x-1)-(x-2)=0 | | z^2+31z=0 | | 6p^2-216=0 | | u/2-11=12 | | 3x+20(4×-6)=18+x | | 5x=3+2x-6 | | F(2)=10x-8 | | 10*(x-1)+100=160 | | 3x-7=-19-x | | 10X(x-1)+100=160 | | j^2-9j-22=0 | | 20=8/2*h | | 7f^2-36f+5=0 | | Z=5y | | 180=45+5x+x | | -3/2=-4/3x-1/5 | | 15y=48+9y | | 3n+25=68 | | 4q^2+29q+7=0 | | 11u-3u=32 | | 6(n+2)=30 | | k^2+42k=0 | | 1/x+1/x^2+(1-x)/x^2-x=0 | | 4+12x=45 | | (-1/2x)=-4 | | s^+22s-23=0 | | y=12519.78-6E+06 | | 6-2x=6x=10x+16 | | d^2+32d=0 |